计算机科学

首页 > 计算机科学

卷积神经网络

2018-07-27 09:31:00     所属分类:人工智能

卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,[1]对于大型图像处理有出色表现。

卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网络,卷积神经网络需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构[2]

目录

  • 1 概览
  • 2 发展
  • 3 结构
    • 3.1 卷积层
    • 3.2 线性整流层
    • 3.3 池化层(Pooling Layer)
    • 3.4 损失函数层
  • 4 应用
    • 4.1 影像辨识
    • 4.2 视讯分析
    • 4.3 自然语言处理
    • 4.4 药物发现
    • 4.5 围棋
  • 5 微调(fine-tuning)
  • 6 可用包
  • 7 参考

概览

发展

结构

卷积层

卷积层(Convolutional layer),卷积神经网络中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法最佳化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

线性整流层

线性整流层(Rectified Linear Units layer, ReLU layer)使用线性整流(Rectified Linear Units, ReLU)作为这一层神经的激励函数(Activation function)。它可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层。

事实上,其他的一些函数也可以用于增强网络的非线性特性,如双曲正切函数 , ,或者Sigmoid函数。相比其它函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍[3],而并不会对模型的泛化准确度造成显著影响。

池化层(Pooling Layer)

每隔2个元素进行的2x2最大池化

池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

池化层通常会分别作用于每个输入的特征并减小其大小。目前最常用形式的池化层是每隔2个元素从图像划分出的区块,然后对每个区块中的4个数取最大值。这将会减少75%的数据量。

除了最大池化之外,池化层也可以使用其他池化函数,例如“平均池化”甚至“L2-范数池化”等。过去,平均池化的使用曾经较为广泛,但是最近由于最大池化在实践中的表现更好,平均池化已经不太常用。

由于池化层过快地减少了数据的大小,目前文献中的趋势是使用较小的池化滤镜,[4]甚至不再使用池化层。[5]

损失函数层

损失函数层(loss layer)用于决定训练过程如何来“惩罚”网络的预测结果和真实结果之间的差异,它通常是网络的最后一层。各种不同的损失函数适用于不同类型的任务。例如,Softmax交叉熵损失函数常常被用于在K个类别中选出一个,而Sigmoid交叉熵损失函数常常用于多个独立的二分类问题。欧几里德损失函数常常用于结果取值范围为任意实数的问题。

应用

影像辨识

卷积神经网络通常在影像辨识别系统中使用。

视讯分析

相比影像辨识问题,视讯分析要难许多。CNN也常被用于这类问题。

自然语言处理

卷积神经网络也常被用于自然语言处理。 CNN的模型被证明可以有效的处理各种自然语言处理的问题,如语义分析[6]、搜索结果提取[7]、句子建模[8] 、分类[9]、预测[10]、和其他传统的NLP任务[11] 等。

药物发现

卷积神经网路已在药物发现中使用。卷积神经网络被用来预测的分子与蛋白质之间的相互作用,以此来寻找靶向位点,寻找出更可能安全和有效的潜在治疗方法。

围棋

卷积神经网路在计算机围棋领域也被使用。2016年3月,AlphaGo对战李世乭的比赛,展示了深度学习在围棋领域的重大突破。

微调(fine-tuning)

可用包

  • roNNie: 是一个简易入门级框架,使用Tensorflow 计算层.可于python下载 pip3 ronnie
  • Caffe: Caffe包含了CNN使用最广泛的库。它由伯克利视觉和学习中心(BVLC)研发,拥有比一般实现更好的结构和更快的速度。同时支持CPU和GPU计算,底层由C++实现,并封装了Python和MATLAB的接口。
  • Torch7(www.torch.ch)
  • OverFeat
  • Cuda-convnet
  • MatConvnet
  • Theano:用Python实现的神经网络包[12]
  • TensorFlow
  • Paddlepaddle(www.paddlepaddle.org)

参考

  1. ^ Convolutional Neural Networks (LeNet) - DeepLearning 0.1 documentation. DeepLearning 0.1. LISA Lab. [31 August 2013]. 
  2. ^ Convolutional Neural Network. [2014-09-16]. 
  3. ^ Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. 2012, 1: 1097–1105. (原始内容存档于2015-02-16). 
  4. ^ Graham, Benjamin. Fractional Max-Pooling. 2014-12-18. arXiv:1412.6071 cs.CV. 
  5. ^ Springenberg, Jost Tobias; Dosovitskiy, Alexey; Brox, Thomas; Riedmiller, Martin. Striving for Simplicity: The All Convolutional Net. 2014-12-21. arXiv:1412.6806 cs.LG. 
  6. ^ Grefenstette, Edward; Blunsom, Phil; de Freitas, Nando; Hermann, Karl Moritz. A Deep Architecture for Semantic Parsing. 2014-04-29. arXiv:1404.7296 cs.CL. 
  7. ^ Learning Semantic Representations Using Convolutional Neural Networks for Web Search – Microsoft Research. research.microsoft.com. [2015-12-17]. 
  8. ^ Kalchbrenner, Nal; Grefenstette, Edward; Blunsom, Phil. A Convolutional Neural Network for Modelling Sentences. 2014-04-08. arXiv:1404.2188 cs.CL. 
  9. ^ Kim, Yoon. Convolutional Neural Networks for Sentence Classification. 2014-08-25. arXiv:1408.5882 cs.CL. 
  10. ^ Collobert, Ronan, and Jason Weston. "A unified architecture for natural language processing: Deep neural networks with multitask learning."Proceedings of the 25th international conference on Machine learning. ACM, 2008.
  11. ^ Collobert, Ronan; Weston, Jason; Bottou, Leon; Karlen, Michael; Kavukcuoglu, Koray; Kuksa, Pavel. Natural Language Processing (almost) from Scratch. 2011-03-02. arXiv:1103.0398 cs.LG. 
  12. ^ 深度网络:Theano项目主页。

显示全文

取消

感谢您的支持,我会继续努力的!

扫码支持
无需打赏可直接关闭阅读全文
1分,2分不嫌少,钱不钱的无所谓,重要的是你的话语激励我前行!

愿你每天温暖如春!!!


上一篇:弈心
下一篇:可废止推理
相关推荐