电机工程

首页 > 电机工程

模糊函数与韦格纳分布的关系

2018-08-20 14:51:07     所属分类:信号处理

模糊函数(Ambiguity function,AF):
韦格纳分布(Wigner distribution,WD):

目录

  • 1 模糊函数与韦格纳分布关系
  • 2 范例
    • 2.1 模糊域(ambiguity domain)的auto-term与cross-term
    • 2.2 两高斯信号和之模糊函数与韦格纳分布应对关系
  • 3 参考

模糊函数与韦格纳分布关系

一个讯号s(t),自相关函数为 如果为时间相依性(time-dependent),则时间相依自相关(time-dependent auto-correlation)为, 时间相依(时变)频谱(time-dependent spectrum)可以表示的形式类似于传统的功率谱,即对时间相依自相关函数做傅立叶变换。

不同的时间相依自相关会导致不同的时间相依功率谱。
如果 ,则时间相依功率谱变成为Wigner distribution
若对中的t做傅立叶逆转换,得到另一个时频表示,对称模糊函数(symmetric ambiguity function,SAF)
模糊函数反映信号在时间和相位的相关性,并已广泛应用在雷达和声纳系统上。 给一个对称模糊函数,透过傅立叶变换可以得到时间相依自相关:
由上式可以推得

也就是对对称模糊函数做两次傅立叶变换可以得到Wigner distribution

范例

一个讯号为两个Gaussian函数的和:


  • 其中集中在原点(0,0),而集中在,而相似于,除了中心点在
    • , , , ,

模糊域(ambiguity domain)的auto-term与cross-term

从范例中得知一项重要事实,即为,在模糊域(ambiguity domain)中的auto-term总是集中在原点(0,0),而cross-term总是在远离原点处,所以可以用一个2D lowpass filter在模糊域中抑制cross-term的干扰,如下:
,其中为2D lowpass filter

两高斯信号和之模糊函数与韦格纳分布应对关系

如果,则


  • 其中SWD为smoothed Wigner distribution

通常( 和 )当作kernal function,用来控制SWD的特性。


若Wigner分布和对称模糊函数用大小(magnitude)及相位(phase)表示,如下:


,
也就是说对对称模糊函数的相位做偏微分,会等于Wigner分布的时频(time-frequency)中心。
相反地, ,
则为对Wigner分布的相位做偏微分,会等于对称模糊函数的中心。


如果,则

会集中在轴上。


如果,则

会集中在轴上。

参考

  • Weiss, Lora G. "Wavelets and Wideband Correlation Processing". IEEE Signal Processing Magazine, pp. 13–32, Jan 1994
  • Shie Qian, Introduction to time-frequency and wavelet transforms, Upper Saddle River, NJ : Prentice Hall, c2002
  • L. Sibul, L. Ziomek, "Generalised wideband crossambiguity functiom", IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '81.01/05/198105/1981; 6:1239- 1242.

感谢您的支持,我会继续努力的!

扫码支持
1分,2分不嫌少,钱不钱的无所谓,重要的是你的话语激励我前行!

愿你每天温暖如春!!!

显示全文

取消

感谢您的支持,我会继续努力的!

扫码支持
无需打赏可直接关闭阅读全文
1分,2分不嫌少,钱不钱的无所谓,重要的是你的话语激励我前行!

愿你每天温暖如春!!!


上一篇:模棱函数
下一篇:次频带编码
相关推荐