电机工程

首页 > 电机工程

循环卷积

2018-08-20 14:52:07     所属分类:信号处理

两个函数的循环卷积是由他们的周期延伸所来定义的。周期延伸意思是把原本的函数平移某个周期 T 的整数倍后再全部加起来,所产生的新函数。 的周期延伸可以写成

两个函数 循环卷积 可用两种互相等价的方式来定义

其中 表示原本的(线性)卷积。


类似地,对于离散信号(数列),可以定义周期 N 的循环卷积


离散信号的循环卷积可以经由循环卷积定理使用快速傅里叶变换(FFT)而有效率的计算。因此,若原本的(线性)卷积能变换成循环卷积来计算,会远比直接计算更快速。考虑到长度 和长度 的有限长度离散信号,做卷积之后会成为长度 的信号,因此只要把两离散信号补上适当数目的零(zero-padding)成为 N 点信号,其中    ,则它们的循环卷积就与卷积相等。即可接着用 N 点 FFT 作计算。

用以上方法计算卷积时,若两个信号长度相差很多,则较短者须补上相当多的零,太不经济。而且在某些情况下,例如较短的 是一个 FIR 滤波器而较长的 是未知长度的输入(像语音)时,直接用以上方法要等所有的输入都收到后才能开始算输出信号,太不方便。这时可以把 分割成许多适当长度的区块(称为 block convolution),然后一段一段的处理。经过滤波后的段落再仔细的连接起来,借由输入或输出的重叠来处理区块连接的部分。这两种做法分别称为重叠-储存之卷积法和重叠-相加之卷积法。

相关条目

  • 卷积
  • 循环卷积定理
  • DFT与循环卷积

参考文献

  • Rabiner, Lawrence R.; Gold, Bernard. Theory and application of digital signal processing. Englewood Cliffs, N.J.: Prentice-Hall. 1975: pp 63–67. ISBN 0-13-914101-4. .
  • Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John A. Discrete-time signal processing. Upper Saddle River, N.J.: Prentice Hall. 1999. ISBN 0-13-754920-2. .

外部链接

cnx

感谢您的支持,我会继续努力的!

扫码支持
1分,2分不嫌少,钱不钱的无所谓,重要的是你的话语激励我前行!

愿你每天温暖如春!!!

显示全文

取消

感谢您的支持,我会继续努力的!

扫码支持
无需打赏可直接关闭阅读全文
1分,2分不嫌少,钱不钱的无所谓,重要的是你的话语激励我前行!

愿你每天温暖如春!!!


上一篇:平稳过程
下一篇:基带
相关推荐